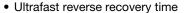


Vishay General Semiconductor


Ultrafast Plastic Rectifier

PRIMARY CHARACTERISTICS				
I _{F(AV)}	4.0 A			
V_{RRM}	400 V and 600 V			
I _{FSM}	150 A			
t _{rr}	50 ns			
V _F	1.05 V			
T _J max.	175 °C			

FEATURES

- Low forward voltage drop
- Low leakage current
- · Low switching losses, high efficiency
- High forward surge capability
- Solder dip 275 °C max. 10 s, per JESD 22-B106
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

TYPICAL APPLICATIONS

For use in high frequency rectification and freewheeling application in switching mode converters and inverters for consumer, computer and telecommunication.

MECHANICAL DATA

Case: DO-201AD

Molding compound meets UL 94 V-0 flammability rating Base P/N-E3 - RoHS compliant, commercial grade

Terminals: Matte tin plated leads, solderable per

J-STD-002 and JESD 22-B102

E3 suffix meets JESD 201 class 1A whisker test **Polarity:** Color band denotes cathode end

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	MUR440	MUR460	UNIT		
Maximum repetitive peak reverse voltage	V_{RRM}	400	600	V		
Working peak reverse voltage	V_{RWM}	400	600	V		
Maximum DC blocking voltage	V_{DC}	400 600		V		
Maximum average forward rectified current (Fig. 1)	I _{F(AV)}	4.0		Α		
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	150		А		
Operating junction and storage temperature range	T _J , T _{STG}	- 65 to	°C			

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)						
PARAMETER	TEST CONDITIONS		SYMBOL	MUR440	MUR460	UNIT
Maximum instantaneous forward voltage	0.0.4	T _J = 150 °C		1.05		
	3.0 A T ₁ = 25 °C		V_F ⁽¹⁾	1.25		V
	4.0 A	1) = 25 C		1.28		-
Maximum instantaneous reverse current at rated DC blocking voltage		T _J = 25 °C	ı (1)	10		μА
		T _J = 150 °C	I _R ⁽¹⁾	250		
Max. reverse recovery time	I _F = 0.5, I _R = 1.0 A, I _{rr} = 0.25 A		t _{rr}	50		ns
Maximum reverse recovery time	$I_F = 1.0 \text{ A}, \text{ dI/dt} = 50 \text{ A/}\mu\text{s}, \\ V_R = 30 \text{ V}, I_{rr} = 10 \text{ \% } I_{RM}$		t _{rr}	75		ns
Maximum forward recovery time	I _F = 1.0 A, dI/dt = 100 A/μs, recovery to 1.0 V		t _{fr}	50		ns

Note

 $^{^{(1)}\,}$ Pulse test: t_p = 300 $\mu s,\,duty\,\,cycle \leq 2\,\,\%$

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	MUR440	MUR460	UNIT	
Typical thermal resistance junction to ambient	R ₀ JA (1)	28		°C/W	

Note

⁽¹⁾ Lead length = 1/2" on P.C. board with 1.5" x 1.5" copper surface

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g) PREFERRED PACKAGE CODE E		BASE QUANTITY	DELIVERY MODE	
MUR460-E3/54	1.138	54	1400	13" diameter paper tape and reel	
MUR460-E3/73	1.138	73	1000	Ammo pack packaging	

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

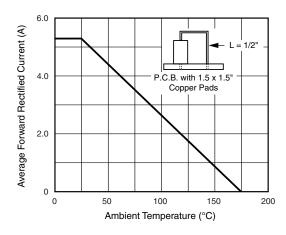


Fig. 1 - Forward Current Derating Curve

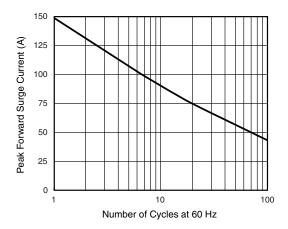


Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current

Vishay General Semiconductor

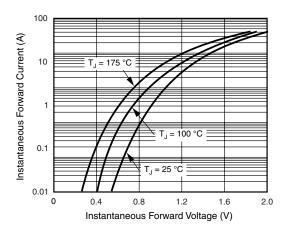


Fig. 3 - Typical Instantaneous Forward Characteristics

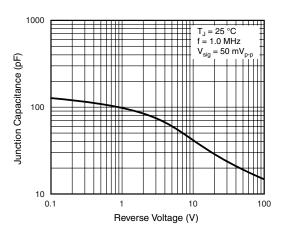


Fig. 5 - Typical Junction Capacitance per Leg

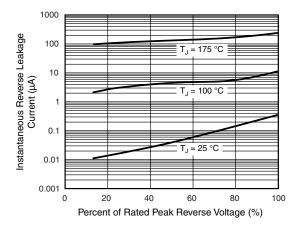
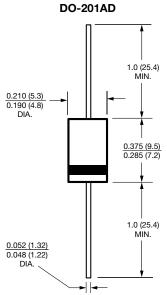



Fig. 4 - Typical Reverse Characteristics

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

www.vishay.com